

MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

Hubert Chan, Kai-Min Chung, **Wei-Kai Lin**, Elaine Shi 2019/01/13

Models of Parallel Computation

- Circuit?
- Parallel Random Access Machine (PRAM)
- Bulk Synchronous Parallel (BSP) model

Massively Parallel Computation,

MPC

Massively Parallel Computation (MPC)

- m Random Access Machines (RAM)
- Fully connected
- Each of space s

- Input size N
- $s = N^{\epsilon}$, const $\epsilon \in (0,1)$
- $\Rightarrow m \ge N^{1-\epsilon}$

MPC Proceeds in Rounds

Space $s = N^{\epsilon}$

MPC

Space $s = N^{\epsilon}$

Rounds

Sort *N* items

0(1)

PRAM

Parallel steps

 $\Omega(\log N)$

Same reason motivated MPC (than PRAM) also motivated that ...

Question: How to get MPC algo "secure"? What is the cost?

What is "secure" in MPC model?

Many adversarial settings ...

Scenario 1:
Adversary is only eavesdropping,
wants to learn secret input

Scenario 2:
Adversary corrupts some <u>machines</u>,
wants secret on <u>others</u>

Scenario 1: Constant Overhead

Adversary is only eavesdropping, wants to learn secret input

MPC algo taking space s, rounds R

secure MPC algo taking space O(s), rounds O(R)

Failure probability in correctness: $\exp\left(-\Omega(\sqrt{s})\right)$

Scenario 2: Constant in Rounds, Security-Parameter in Space

Adversary corrupts some <u>machines</u>, wants secret on <u>others</u>

secure MPC algo taking space $O(s \cdot poly(\kappa))$, rounds O(R)

Assume Learning With Errors (LWE), compact Fully Homomorphic Encryption (FHE), and corrupt machines < 1/3.

Fail probability in correctness: $\exp\left(-\Omega(\sqrt{s})\right)$.

(Scenario 1) Technique: Oblivious Routing

Butterfly Network (well-known)

Butterfly Network (well-known)

Exist a path for any (sender, receiver), very easy to find it

Routing from Butterfly Network

Routing from Butterfly Network

Idea: Degree s Butterfly Network

Idea: Degree s Butterfly Network

Use space $s = N^{\epsilon}$ to merge log s layers $1/\epsilon$ layers ⇒ const rounds ©

Summary

Compile <u>insecure</u> Massively Parallel Computation algo into a <u>secure</u> one

Eavesdropping adversary: const overhead in rounds & space

1/3 corrupt machines: const overhead in rounds, poly(security para) in space

(Need crypto assumptions)

Thank you!

Previous result and Discuss

Compare to typical secure multiparty computation

- Const rounds,
 local space ≈ circuit complexity
- Many rounds, smaller local space

Remove crypto assumptions?

 If we can secure any MPC algo using no assumption, then we have a statistical SMPC using small communication (solve open problem)